Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue

The More, the Less, and the Much More: An Introduction to Lukasiewicz logic, Part 2

Vincenzo Marra vincenzo.marra@unimi.it

Dipartimento di Matematica Federigo Enriques Università degli Studi di Milano Italy

> Vienna Summer of Logic Logic, Algebra and Truth Degrees July 2014

∢	
S	
F	
F	
A.	
H	

Attrattività

Æ

	Sostenibilita
)	Stage

Borse di studio

Mobilità Internazionale

Dispersione

Efficacia

Soddisfazione

Occupazione

RICERCA

Fondi esterni

Ricerca

2

Alta formazione

POSIZIONE	ATENEO	PUNTI
1	Verona	84
2	Trento	84
3	Politecnico di Milano	79
4	Bologna	78
5	Padova	76
6	Politecnica delle Marche	75
7	Venezia Ca' Foscari	73
8	Milano Bicocca	73
9	Siena	73
10	Politecnico di Torino	73
11	Pavia	72
12	Piemonte Orientale	71
13	Milano Statale	70
14	Ferrara	68
15	Udine	66
16	Macerata	65
17	Firenze	63
18	Viterbo	62
19	Modena e Reggio Emilia	61
20	Venezia luav	60
21	Torino	59
22	Roma Foro Italico	58
23	Salerno	58
24	Pisa	56

Intermezzo	ntermezzo Semantics Polyhedra Numbers out of Formulæ					
		Interm	ezzo			

Ada Lovelace, 1815 - 1852

By now Ada is beginning to feel a little more optimistic about the possibility of applying reasoning to her problem.

ntermezzo Semantics Polyhedra Numbers out of Formulæ					
		Semar	ntics		

- The <u>intended semantics</u> is necessarily informal, and is one of the factors that can inspire the definition of a formal deductive system. In our case, the intended semantics is given by vague predicates/propositions.
- The <u>formal semantics</u>, on the other hand, is what we usually mean by "semantics" in formal logic: a mathematical construct (logical valuations, Tarskian structures, Kripke frames...) that formalises the intended semantics, hopefully leading to a completeness theorem for the formal deductive system.

atermezzo Semantics Polyhedra Numbers out of Formulæ					
		Semar	ntics		

- The <u>intended semantics</u> is necessarily informal, and is one of the factors that can inspire the definition of a formal deductive system. In our case, the intended semantics is given by vague predicates/propositions.
- The <u>formal semantics</u>, on the other hand, is what we usually mean by "semantics" in formal logic: a mathematical construct (logical valuations, Tarskian structures, Kripke frames...) that formalises the intended semantics, hopefully leading to a completeness theorem for the formal deductive system.
- Something we mathematical logicians learnt in the last quarter of the 20th century:

Under reasonable assumption (e.g. algebraisability), the formal deductive system <u>canonically induces</u> its own formal semantics.

lnt ermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue
		Axiom sys	stem.	
(A0) -	$\neg(\alpha \triangleright \top)$		Ex falso quodli	bet
(A1) a	$x \rhd \beta \leqslant \alpha$		A fort	ori
(A2) ($(\gamma \rhd \alpha) \rhd (\gamma \rhd \beta)$	$) \leq \beta \rhd \alpha$	Transitivity of	$\Box \triangleright$
(A3) a	$\alpha \rhd (\alpha \rhd \beta) \leqslant \beta$	$3 \triangleright (\beta \triangleright \alpha)$	Conjunction is commutat	ive
(A4) a	$x \rhd \beta \leqslant \neg \beta \rhd \neg$	¬α	Contraposit	ion

 $\alpha \land \beta \equiv \alpha \rhd (\alpha \rhd \beta)$

Deduction rule.

Vague Modus Tollens.

(R1)
$$\frac{\alpha \leq \beta \qquad \neg \beta}{\neg \alpha}$$

e	Epilogu	bers out of Formulæ	Numbers	Polyhedra	Semantics	Intermezzo

Lindenbaum's Equivalence Relation

$$\label{eq:alpha} \begin{split} \text{Formul} & \texttt{α}, \beta \text{ are logically equivalent if } \vdash \alpha \leqslant \beta \text{ and } \vdash \beta \leqslant \alpha. \\ \text{Write } \alpha \equiv \beta. \end{split}$$

Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue
Lind	enbaum's Eq	uivalence Re	lation	

Formulæ α , β are logically equivalent if $\vdash \alpha \leq \beta$ and $\vdash \beta \leq \alpha$. Write $\alpha \equiv \beta$.

On the quotient set $\frac{F_{ORM}}{\equiv}$, the connectives induce operations:

- 1 := $[\top]_{\equiv}$
- $\neg[\alpha]_{\equiv} := [\neg \alpha]_{\equiv}$
- $[\alpha]_{\equiv} \rhd [\beta]_{\equiv} := [\alpha \rhd \beta]_{\equiv}$

Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue

Lindenbaum's Equivalence Relation Formulæ α , β are logically equivalent if $\vdash \alpha \leq \beta$ and $\vdash \beta \leq \alpha$. Write $\alpha \equiv \beta$.

On the quotient set $\frac{F_{ORM}}{\equiv}$, the connectives induce operations:

- 1 := $[\top]_{\equiv}$
- $\neg[\alpha]_{\equiv} := [\neg \alpha]_{\equiv}$
- $[\alpha]_{\equiv} \triangleright [\beta]_{\equiv} := [\alpha \triangleright \beta]_{\equiv}$

The algebraic structure $(\frac{\text{Form}}{\equiv}, \rhd, \neg, 1)$ is an MV-algebra.

'MV-algebra' is short for 'Many-Valued Algebra', "for lack of a better name."

(C.C. Chang, 1986).

MV-algebras : Lukasiewicz logic = Boolean algebras : Classical logic

MV-algebras are usually presented over the adjoint signature \oplus , \neg , 0. Here $x \oplus y := \neg((\neg x) \rhd y)$. Abstractly: $(M, \oplus, \neg, 0)$ is an MV-algebra if $(M, \oplus, 0)$ is a

commutative monoid, $\neg \neg x = x$, $1 := \neg 0$ is absorbing for \oplus $(x \oplus 1 = 1)$, and, characteristically,

$$\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x \tag{*}$$

MV-algebras are usually presented over the adjoint signature \oplus , \neg , 0. Here $x \oplus y := \neg((\neg x) \rhd y)$.

Abstractly: $(M, \oplus, \neg, 0)$ is an MV-algebra if $(M, \oplus, 0)$ is a commutative monoid, $\neg \neg x = x$, $1 := \neg 0$ is absorbing for \oplus $(x \oplus 1 = 1)$, and, characteristically,

$$\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x \tag{(*)}$$

Any MV-algebra has an underlying distributive lattice bounded below by 0 and above by 1. Joins are given by

$$x \lor y := \neg (\neg x \oplus y) \oplus y$$

Thus, the characteristic law (*) states that joins commute:

$$x \lor y = y \lor x$$

MV-algebras are usually presented over the adjoint signature \oplus , \neg , 0. Here $x \oplus y := \neg((\neg x) \rhd y)$.

Abstractly: $(M, \oplus, \neg, 0)$ is an MV-algebra if $(M, \oplus, 0)$ is a commutative monoid, $\neg \neg x = x$, $1 := \neg 0$ is absorbing for \oplus $(x \oplus 1 = 1)$, and, characteristically,

$$\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x \tag{(*)}$$

Any MV-algebra has an underlying distributive lattice bounded below by 0 and above by 1. Joins are given by

$$x \lor y := \neg (\neg x \oplus y) \oplus y$$

Thus, the characteristic law (*) states that joins commute:

$$x \lor y = y \lor x$$

Meets are defined by the de Morgan condition

$$x \wedge y := \neg (\neg x \vee \neg y)$$

MV-algebras are usually presented over the adjoint signature \oplus , \neg , 0. Here $x \oplus y := \neg((\neg x) \triangleright y)$.

Abstractly: $(M, \oplus, \neg, 0)$ is an MV-algebra if $(M, \oplus, 0)$ is a commutative monoid, $\neg \neg x = x$, $1 := \neg 0$ is absorbing for \oplus $(x \oplus 1 = 1)$, and, characteristically,

$$\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x \tag{(*)}$$

Any MV-algebra has an underlying distributive lattice bounded below by 0 and above by 1. Joins are given by

$$x \lor y := \neg (\neg x \oplus y) \oplus y$$

Thus, the characteristic law (*) states that joins commute:

$$x \lor y = y \lor x$$

Meets are defined by the de Morgan condition

$$x \wedge y := \neg (\neg x \vee \neg y)$$

Boolean algebras=Idempotent MV-algebras: $x \oplus x = x$.

Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue
Theor sets of	<mark>ies</mark> in Lukasiev f formulæ.	wicz logic are a	as usual: deductively clo	sed
A the	ory is consiste	nt if it fails to	contain at least one form	nula.
A theo consis	ory is maxima tent, and inclu	l consistent, or 1sion-maximal	just maximal, if it is with that property.	
A the	ory Θ is prime	if it is consist	ent, and for any $lpha$ and $ $	β

either $\Theta \vdash \alpha \leqslant \beta$ or $\Theta \vdash \beta \leqslant \alpha$ holds.

Theories in Lukasiewicz logic are as usual: deductively closed sets of formulæ.

A theory is consistent if it fails to contain at least one formula.

A theory is maximal consistent, or just maximal, if it is consistent, and inclusion-maximal with that property.

A theory Θ is prime if it is consistent, and for any α and β either $\Theta \vdash \alpha \leqslant \beta$ or $\Theta \vdash \beta \leqslant \alpha$ holds.

For an arbitrary set S of formulæ, its deductive closure S^{\vdash} is the intersection of all theories that contain S.

The above terminology generalises to S in the obvious manner, e.g. S is maximal consistent if S^{\vdash} is maximal.

Given a theory Θ , a set of formulæ S is said to axiomatise Θ just in case $S^{\vdash} = \Theta$.

We now restrict attention to the fragment of Lukasiewicz logic over one variable, X.

Int ermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue

There are now natural bijections (up to isomorphism) between:

- MV-algebras, and
- Theories in Łukasiewicz logic.

And between:

- Linearly ordered MV-algebras, and
- Prime theories in Łukasiewicz logic.

And between:

- Simple MV-algebras, and
- Maximal theories in Lukasiewicz logic.

Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue

There are now natural bijections (up to isomorphism) between:

- MV-algebras, and
- Theories in Łukasiewicz logic.

And between:

- Linearly ordered MV-algebras, and
- Prime theories in Łukasiewicz logic.

And between:

- Simple MV-algebras, and
- Maximal theories in Łukasiewicz logic.

Note

Any formula in Łukasiewicz logic can be evaluated into any MV-algebra, by construction.

Theorem (Essentially O. Hölder, 1901)

If A is a simple MV-algebra, then there is a <u>unique</u> MV-algebraic embedding

$$A \hookrightarrow [0,1].$$

Here, the interval $[0,1]\subseteq \mathbb{R}$ is made into an MV-algebra with neutral element 0 by defining

$$x \rhd y := \max\{x - y, 0\}$$
, $\neg x := 1 - x$.

The underlying lattice order of this MV-algebra coincides with the natural order of [0, 1].

Theorem (Essentially O. Hölder, 1901)

If A is a simple MV-algebra, then there is a <u>unique</u> MV-algebraic embedding

$$A \hookrightarrow [0,1].$$

Here, the interval $[0,1]\subseteq \mathbb{R}$ is made into an MV-algebra with neutral element 0 by defining

$$x \vartriangleright y := \max\{x - y, 0\}$$
, $\neg x := 1 - x$.

The underlying lattice order of this MV-algebra coincides with the natural order of [0, 1].

Theorem (Chang's completeness theorem, 1959) The variety of MV-algebras is generated by [0, 1].

C.C. Chang, Trans. of the AMS, 1959.

Now define a valuation, tout court, to be an evaluation of the entire set FORM into MV-algebra [0, 1] — or equivalently, into any simple MV-algebra. Write

 $\models \alpha$

if each valuation w satisfies $w(\alpha) = 1$. Then, from Chang's theorem:

Soundness and Completeness Theorem for L For any $\alpha \in FORM$,

 $\vdash \alpha$ if, and only if, $\models \alpha$.

A. Rose and J. Barkley Rosser, Trans. of the AMS, 1958.

Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue

$$x \vee \neg x = 1. \tag{(\star)}$$

Then (\star) is not an identity over [0, 1]: the only evaluations into [0, 1] that satisfy (\star) are $x \mapsto 0$ and $x \mapsto 1$ — the Boolean, or classical, evaluations.

Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue

$$x \vee \neg x = 1. \tag{(\star)}$$

Then (\star) is not an identity over [0, 1]: the only evaluations into [0, 1] that satisfy (\star) are $x \mapsto 0$ and $x \mapsto 1$ — the Boolean, or classical, evaluations.

Here is a 2-variable generalisation of the *tertium non datur* term:

$$x \vee \neg x \vee y \vee \neg y = 1 \tag{**}$$

Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue

$$x \vee \neg x = 1. \tag{(\star)}$$

Then (\star) is not an identity over [0, 1]: the only evaluations into [0, 1] that satisfy (\star) are $x \mapsto 0$ and $x \mapsto 1$ — the Boolean, or classical, evaluations.

Here is a 2-variable generalisation of the tertium non datur term:

$$x \vee \neg x \vee y \vee \neg y = 1 \qquad (\star\star)$$

The evaluations of x and y into [0, 1], *i.e.* the pairs $(r, s) \in [0, 1]^2$, that satisfy $(\star\star)$, are precisely the points lying on the boundary of the unit square:

Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue

$$x \vee \neg x = 1. \tag{(\star)}$$

Then (\star) is not an identity over [0, 1]: the only evaluations into [0, 1] that satisfy (\star) are $x \mapsto 0$ and $x \mapsto 1$ — the Boolean, or classical, evaluations.

Here is a 2-variable generalisation of the *tertium non datur* term:

$$x \vee \neg x \vee y \vee \neg y = 1 \qquad (\star\star)$$

The evaluations of x and y into [0, 1], *i.e.* the pairs $(r, s) \in [0, 1]^2$, that satisfy $(\star\star)$, are precisely the points lying on the boundary of the unit square:

The boundary of the unit square.

Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue

$$X \vee \neg X = 1 \tag{(*)}$$

The boundary of the unit interval.

٠

٠

$$X \vee \neg X \vee Y \vee \neg Y = 1 \tag{**}$$

The boundary of the unit square.

Intermezzo Semantics Polyhedra Numbers out of Formulæ Epilogue

Rational polyhedra

Leonardo's Truncated Icosahedron

(Illustration for Luca Pacioli's The Divine Proportion, 1509.)

The convex hull of a set $P \subseteq \mathbb{R}^n$, written conv P, is the collection of all convex combinations of elements of P:

$$\operatorname{conv} P \;=\; \left\{ \sum_{i=1}^m \, r_i v_i \,\mid\, v_i \in P ext{ and } 0 \leqslant r_i \in \mathbb{R} ext{ with } \sum_{i=1}^m \, r_i = 1
ight\} \,.$$

Such a set is convex if $P = \operatorname{conv} P$.

The convex hull of a set $P \subseteq \mathbb{R}^n$, written conv P, is the collection of all convex combinations of elements of P:

$$\operatorname{conv} P \;=\; \left\{ \sum_{i=1}^m \, r_i v_i \,\mid\, v_i \in P ext{ and } 0 \leqslant r_i \in \mathbb{R} ext{ with } \sum_{i=1}^m \, r_i = 1
ight\} \,.$$

Such a set is convex if $P = \operatorname{conv} P$. The set P is called:

• a polytope, if there is a finite $F \subseteq \mathbb{R}^n$ with $P = \operatorname{conv} F$;

The convex hull of a set $P \subseteq \mathbb{R}^n$, written conv P, is the collection of all convex combinations of elements of P:

$$\operatorname{conv} P \;=\; \left\{ \sum_{i=1}^m \, r_i v_i \,\mid\, v_i \in P ext{ and } 0 \leqslant r_i \in \mathbb{R} ext{ with } \sum_{i=1}^m \, r_i = 1
ight\} \,.$$

Such a set is convex if $P = \operatorname{conv} P$.

The set P is called:

- a polytope, if there is a finite $F \subseteq \mathbb{R}^n$ with $P = \operatorname{conv} F$;
- a rational polytope, if there is a finite $F \subseteq \mathbb{Q}^n$ with $P = \operatorname{conv} F$.

Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue

A polytope in \mathbb{R}^2 (a simplex).

Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue

A (compact) polyhedron in \mathbb{R}^n is a union of finitely many polytopes in \mathbb{R}^n .

A polyhedron in \mathbb{R}^2 .

Similarly, a rational polyhedron is a union of finitely many rational polytopes.

Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue
Let <i>P</i> <i>f</i> : <i>P</i> –	$\subseteq \mathbb{R}^n$ be a ration $ ightarrow \mathbb{R}$ is a $\mathbb{Z} ext{-map}$	onal polyhedron. if the following	A continuous function hold.	

• There is a finite set $\{L_1, \ldots, L_m\}$ of affine linear functions $L_i \colon \mathbb{R}^n \to \mathbb{R}$ such that $f(x) = L_{i_x}(x)$ for some $1 \leq i_x \leq m$.

A piecewise linear function $[0,1] \rightarrow \mathbb{R}$.

Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue
Let $P \in f \colon P \to f$	$\subseteq \mathbb{R}^n$ be a rational $ ightarrow \mathbb{R}$ is a $\mathbb{Z} ext{-map}$ if	l polyhedron. A the following h	continuous function	
• m			- ()	

• There is a finite set $\{L_1, \ldots, L_m\}$ of affine linear functions $L_i \colon \mathbb{R}^n \to \mathbb{R}$ such that $f(x) = L_{i_x}(x)$ for some $1 \leq i_x \leq m$.

2 Each L_i can be written as a linear polynomial with integer coefficients.

A piecewise linear function $[0,1] \rightarrow \mathbb{R}$.

mi ermezzo	Semantics	Polynedra	Numbers out of Formulæ	Ephogue
Let P	$\subseteq \mathbb{R}^n$ be a ration \mathbb{R} is a \mathbb{Z} -map i	al polyhedroi f the followin	n. A continuous function g hold	
у. <u>-</u> т.	here is a finite se	t { <i>L</i> _1	of affine linear functions	

- There is a finite set $\{L_1, \ldots, L_m\}$ of affine linear functions $L_i \colon \mathbb{R}^n \to \mathbb{R}$ such that $f(x) = L_{i_x}(x)$ for some $1 \leq i_x \leq m$.
- 2 Each L_i can be written as a linear polynomial with integer coefficients.

A piecewise linear function $[0,1] \rightarrow \mathbb{R}$.

A map $F: P \subseteq \mathbb{R}^n \to Q \subseteq \mathbb{R}^m$ between polyhedra always is of the form $F = (f_1, \ldots, f_m), f_i: P \to \mathbb{R}$. Then F is a Z-map if each one of its scalar components f_i is.

Rational polyhedra are precisely the subsets of \mathbb{R}^n that are definable by a term in the language of MV-algebras; and \mathbb{Z} -maps are precisely the continuous transformations that are definable by tuples of terms in that language. Rational polyhedra are precisely the subsets of \mathbb{R}^n that are definable by a term in the language of MV-algebras; and \mathbb{Z} -maps are precisely the continuous transformations that are definable by tuples of terms in that language.

Stone-type duality for finitely presented MV-algebras

The category of finitely presented MV-algebras, and their homomorphisms, is equivalent to the opposite of the category of rational polyhedra, and the \mathbb{Z} -maps amongst them.

• V.M. & L. Spada, Duality, projectivity, and unification in Lukasiewicz logic and MV-algebras, Annals of Pure and Applied Logic, 2012.

<u>From MV-algebras to rational polyhedra</u>: Given $\mathscr{F}_n / \langle \tau(x_1, \ldots, x_n) \rangle$, the associated rational polyhedron $\mathbb{V}(\tau)$ is the set of *n*-tuples $(r_1, \ldots, r_n) \in [0, 1]^n$ such that $\tau(r_1, \ldots, r_n) = 0$ in [0, 1]. <u>From MV-algebras to rational polyhedra</u>: Given $\mathscr{F}_n / \langle \tau(x_1, \ldots, x_n) \rangle$, the associated rational polyhedron $\mathbb{V}(\tau)$ is the set of *n*-tuples $(r_1, \ldots, r_n) \in [0, 1]^n$ such that $\tau(r_1, \ldots, r_n) = 0$ in [0, 1].

<u>From rational polyhedra to MV-algebras</u>: Given $P \subseteq \mathbb{R}^n$, the collection $\nabla(P)$ of all Z-maps $P \to [0, 1]$ is a (finitely presentable) MV-algebra under the pointwise operation inherited from [0, 1].

<u>From MV-algebras to rational polyhedra</u>: Given $\mathscr{F}_n / \langle \tau(x_1, \ldots, x_n) \rangle$, the associated rational polyhedron $\mathbb{V}(\tau)$ is the set of *n*-tuples $(r_1, \ldots, r_n) \in [0, 1]^n$ such that $\tau(r_1, \ldots, r_n) = 0$ in [0, 1].

<u>From rational polyhedra to MV-algebras</u>: Given $P \subseteq \mathbb{R}^n$, the collection $\nabla(P)$ of all Z-maps $P \to [0, 1]$ is a (finitely presentable) MV-algebra under the pointwise operation inherited from [0, 1].

<u>Example</u>. If $\tau(x_1, \ldots, x_n)$ is identically equal to 0 in any MV-algebra, then it generates the trivial ideal {0}. In this case, $\mathscr{F}_n / \langle \tau \rangle = \mathscr{F}_n$, and $\mathbb{V}(\tau) = [0, 1]^n$. Hence the duals of free algebras are the unit cubes. <u>From MV-algebras to rational polyhedra</u>: Given $\mathscr{F}_n/\langle \tau(x_1,\ldots,x_n) \rangle$, the associated rational polyhedron $\mathbb{V}(\tau)$ is the set of *n*-tuples $(r_1,\ldots,r_n) \in [0,1]^n$ such that $\tau(r_1,\ldots,r_n) = 0$ in [0,1].

<u>From rational polyhedra to MV-algebras</u>: Given $P \subseteq \mathbb{R}^n$, the collection $\nabla(P)$ of all Z-maps $P \to [0, 1]$ is a (finitely presentable) MV-algebra under the pointwise operation inherited from [0, 1].

<u>Example</u>. If $\tau(x_1, \ldots, x_n)$ is identically equal to 0 in any MV-algebra, then it generates the trivial ideal {0}. In this case, $\mathscr{F}_n / \langle \tau \rangle = \mathscr{F}_n$, and $\mathbb{V}(\tau) = [0, 1]^n$. Hence the duals of free algebras are the unit cubes.

<u>Remark</u>. The subspace $\mathbb{V}(\tau) \subseteq [0,1]^n$ homeomorphic to the maximal spectral space of $\mathscr{F}_n / \langle \tau \rangle$, topologised by the (analogue of) the Zariski topology. The MV-algebra $\nabla(P)$ is the exact analogue for rational polyhedra of the coordinate ring of an affine algebraic variety.

The syntax-semantics dictionary.

Algebra, or Syntax.	Geometry, or Semantics.
F.p. algebra	Rational polyhedron
Homomorphism	\mathbb{Z} -map
F.p. subalgebra	Continuous image by \mathbb{Z} -map
F.p. quotient algebra	Rational subpolyhedron
F.p. projective algebra	Retract of cube by $\mathbb{Z} ext{-maps}$
Free n -gen. algebra	$[0, 1]^n$
Maximal congruence	Point of rational polyhedron
Intersection of maximal cong.	Closed subset of rational polyhedron
Finite product $A imes B$	Finite disjoint union

Intermezzo

Semantics

Polyhedra

Numbers out of Formulæ

Epilogue

Numbers out of Formulæ

Otto Hölder, 1859–1937.

Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue

X := "VM is tall".

Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue

X := "VM is tall".

We assumed that truth comes in 'degrees', whatever they are. What does it mean to attach a specific 'degree of truth' to X?

Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue

X := "VM is tall".

We assumed that truth comes in 'degrees', whatever they are. What does it mean to attach a specific 'degree of truth' to X? In classical logic:

The truth value attached to X (in a given possible world, i.e. valuation) is the answer to one yes/no question: Is X the case?

Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue

X := "VM is tall".

We assumed that truth comes in 'degrees', whatever they are. What does it mean to attach a specific 'degree of truth' to X? In classical logic:

The truth value attached to X (in a given possible world, i.e. valuation) is the answer to one yes/no question: Is X the case?

In Łukasiewicz logic:

The degree of truth attached to X (in a given possible world, i.e. valuation) is the set of answers to a tree of $\underline{\text{yes/no}}$ questions.

Intermezzo	Semantics	Polyhedra	N	umbers out of Forr	nulæ	Epilogue
		F	α?			
		I F	$\begin{array}{ll} R_{0,1} &= \neg X \\ R_{0,1} &= X \end{array}$			
	$L_{1,1} = L_{1,1}$	$E_{0,1} \triangleright R_{0,1}$		$L_{1,2} = L$	^{(0,1}	
-	$R_{1,1} = I$	<i>x</i> _{0,1} ∖	-	$R_{1,2} = R$	$\mathcal{L}_{0,1} \triangleright \mathcal{L}_{0,1}$	Ŧ
$egin{array}{ccc} L_{2,1} &= \ R_{2,1} &= \ \end{array}$	$L_{1,1} \triangleright R_{1,1}$ $R_{1,1}$	$egin{array}{rcl} L_{2,2}&\equiv L_{1,1}\ R_{2,2}&=R_{1,1}arpi \end{array}$	$L_{2,3}$ $L_{1,1}$ $R_{2,3}$	$= L_{1,2} \triangleright R_{1,2}$ $= R_{1,2}$	$L_{2,4} = R_{2,4} =$	$\begin{array}{c} L_{1,2} \\ R_{1,2} \vartriangleright L_{1,2} \end{array}$
L _{3,1}	$L_{3,2}$	L _{3,3}	L _{3,4} L _{3,5}	L _{3,6}	$L_{3,7}$	L _{3,8}
$R_{3,1}$	$R_{3,2}$	$R_{3,3}$	R _{3,4} R _{3,5}	$R_{3,6}$	$R_{3,7}$	R _{3,8}
:						:
:						

The Yes/No Questions.

Let us encode a branch of the tree into a (finite or infinite) sequence of left-right steps downward from the root, as in

lrllllrrrlrlrlr...

Let us encode a branch of the tree into a (finite or infinite) sequence of left-right steps downward from the root, as in

lrllllrrrlrlrlr...

Taxonomy in one variable (for the sake of exposition):

Let us encode a branch of the tree into a (finite or infinite) sequence of left-right steps downward from the root, as in

lrllllrrrlrlrlr...

Taxonomy in one variable (for the sake of exposition):

 The finite sequences: Classify finitely axiomatisable theories, or equivalently the elements of [0, 1] ∩ Q.

Let us encode a branch of the tree into a (finite or infinite) sequence of left-right steps downward from the root, as in

lrllllrrrlrlrlr...

Taxonomy in one variable (for the sake of exposition):

- The finite sequences: Classify finitely axiomatisable theories, or equivalently the elements of [0, 1] ∩ Q.
- The infinite sequences that are not definitively constant: Classify maximal, non-finitely-axiomatisable theories, or equivalently the elements of $[0, 1] \setminus \mathbb{Q}$.

Let us encode a branch of the tree into a (finite or infinite) sequence of left-right steps downward from the root, as in

lrllllrrrlrlrlr...

Taxonomy in one variable (for the sake of exposition):

- The finite sequences: Classify finitely axiomatisable theories, or equivalently the elements of [0, 1] ∩ Q.
- The infinite sequences that are not definitively constant: Classify maximal, non-finitely-axiomatisable theories, or equivalently the elements of $[0, 1] \setminus \mathbb{Q}$.
- The infinite definitively constant sequences: Classify prime, non-maximal theories, or equivalently the elements of [0, 1] ∩ Q, plus or minus a linear infinitesimal.

The Farey tree.

Cauchy's Theorem. Every rational number in (0, 1) occurs, automatically in reduced form, as the mediant of the numbers in some node of the Farey tree exactly once. (The mediant of $\frac{a}{b}$ and $\frac{c}{d}$ is $\frac{a+c}{b+d}$.)

Int ermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue

Thm. There are natural bijections between the finitely axiomatisable maximal consistent theories in L over 1 variable X, the nodes of the Farey tree together with $\{0, 1\}$, and the rational numbers in [0, 1].

Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue
		Taking s	tock	

To attach a degree of truth to a formula (=vague proposition such as "VM is tall") in Lukasiewiciz logic mean to consider that formula subject to a prime consistent theory. In the special case that the theory is maximal, the degree of truth can be <u>canonically</u> identified with a unique real number in [0, 1].

Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue

Taking stock

To attach a degree of truth to a formula (=vague proposition such as "VM is tall") in Lukasiewiciz logic mean to consider that formula subject to a prime consistent theory. In the special case that the theory is maximal, the degree of truth can be <u>canonically</u> identified with a unique real number in [0, 1].

The prime theory has, moreover, a <u>canonical</u> — though not recursively computable! — axiomatisation whose interpretation in the intended semantics of vague propositions yield the intuitive content of what it means, for example, to say that "VM is tall" is true to degree $\frac{1}{2}$ — or $\frac{\pi}{5\sqrt{2}}$, for that matter.

Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue
		Epilog	gue	

Intermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue
	A note	on "Very" a	and "Somewhat"	

The monoidal "conjunction"

 $\alpha \odot \beta \equiv \alpha \rhd \neg \beta$

Iterations of \odot express weakenings in the intended semantics. If X := "VM is tall", then $X \odot X := \text{Very}(\text{"VM} \text{ is tall"})$, i.e. "It is very true that VM is tall".

Caution

The binary monoidal connective \odot , adjoint to \rightarrow , is not interpretable as a conjunction in the intended semantics.

lnt ermezzo	Semantics	Polyhedra	Numbers out of Formulæ	Epilogue
	A note	on "Very" a	and "Somewhat"	

The monoidal "disjunction"

 $\alpha \oplus \beta \equiv \neg (\neg \alpha \rhd \beta)$

Iterations of \oplus express weakenings in the intended semantics. If X := ``VM is tall", then $X \oplus X := \text{Somewhat}(\text{``VM} \text{ is tall"})$, i.e. "It is somewhat true that VM is tall".

Caution

The binary monoidal connective \oplus , adjoint to \ominus , is not interpretable as a disjunction in the intended semantics.

<	٢	
C	Ś	
Ē	=	
F	2	
2	ĥ	
Ξ	₹	

Attrattività

Æ

	Sostenibilit
)	Stage

Borse di studio

Mobilità Internazionale

Dispersione

Efficacia

Soddisfazione

Occupazione

Ricerca

2

RICERCA

Alta formazione

POSIZIONE	ATENEO	PUNTI
1	Verona	84
2	Trento	84
3	Politecnico di Milano	79
4	Bologna	78
5	Padova	76
6	Politecnica delle Marche	75
7	Venezia Ca' Foscari	73
8	Milano Bicocca	73
9	Siena	73
10	Politecnico di Torino	73
11	Pavia	72
12	Piemonte Orientale	71
13	Milano Statale	70
14	Ferrara	68
15	Udine	66
16	Macerata	65
17	Firenze	63
18	Viterbo	62
19	Modena e Reggio Emilia	61
20	Venezia luav	60
21	Torino	59
22	Roma Foro Italico	58
23	Salerno	58
24	Pisa	56

Thank you for your attention.