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Intermezzo

Ada Lovelace, 1815 { 1852

By now Ada is beginning to feel a little more optimistic about

the possibility of applying reasoning to her problem.
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Semantics

1 The intended semantics is necessarily informal, and is one

of the factors that can inspire the de�nition of a formal

deductive system. In our case, the intended semantics is

given by vague predicates/propositions.
2 The formal semantics, on the other hand, is what we

usually mean by \semantics" in formal logic: a

mathematical construct (logical valuations, Tarskian

structures, Kripke frames. . . ) that formalises the intended

semantics, hopefully leading to a completeness theorem for

the formal deductive system.

3 Something we mathematical logicians learnt in the last

quarter of the 20th century:

Under reasonable assumption (e.g. algebraisability), the formal

deductive system canonically induces its own formal semantics.
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The Semantics — whatever it turns out to be

StoneBooleop
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Axiom system.

(A0) ¬(α B > ) Ex falso quodlibet

(A1) α B β 6 α A fortiori

(A2) (γ B α) B (γ B β) 6 β B α Transitivity of B

(A3) α B (α B β) 6 β B (β B α) Conjunction is commutative

(A4) α B β 6 ¬β B ¬α Contraposition

α∧ β ≡ α B (α B β)

Deduction rule.

(R1) α6β ¬β
¬α Vague Modus Tollens.
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Lindenbaum’s Equivalence Relation

Formul�α,β are logically equivalent if ` α 6 β and ` β 6 α.

Write α ≡ β.

On the quotient set Form

≡ , the connectives induce operations:

1 := [>]≡
¬[α]≡ := [¬α]≡

[α]≡ B [β]≡ := [α B β]≡

The algebraic structure (Form≡ ,B,¬, 1) is an MV-algebra.

`MV-algebra' is short for `Many-Valued Algebra', \for lack

of a better name."

(C.C. Chang, 1986).

MV-algebras :  Lukasiewicz logic = Boolean algebras : Classical logic
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MV-algebras are usually presented over the adjoint signature ⊕,

¬, 0. Here x ⊕ y := ¬((¬x ) B y).

Abstractly: (M ,⊕,¬, 0) is an MV-algebra if (M ,⊕, 0) is a

commutative monoid, ¬¬x = x , 1 := ¬0 is absorbing for ⊕
(x ⊕ 1 = 1), and, characteristically,

¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x )⊕ x (*)

Any MV-algebra has an underlying distributive lattice

bounded below by 0 and above by 1. Joins are given by

x ∨ y := ¬(¬x ⊕ y)⊕ y

Thus, the characteristic law (*) states that joins commute:

x ∨ y = y ∨ x

Meets are de�ned by the de Morgan condition

x ∧ y := ¬(¬x ∨ ¬y)

Boolean algebras=Idempotent MV-algebras: x ⊕ x = x .

Equivalently: MV-algebras that satisfy the tertium non datur

law

x ∨ ¬x = 1

.
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Theories in  Lukasiewicz logic are as usual: deductively closed

sets of formul�.

A theory is consistent if it fails to contain at least one formula.

A theory is maximal consistent, or just maximal, if it is

consistent, and inclusion-maximal with that property.

A theory Θ is prime if it is consistent, and for any α and β

either Θ ` α 6 β or Θ ` β 6 α holds.

For an arbitrary set S of formul�, its deductive closure S` is

the intersection of all theories that contain S .

The above terminology generalises to S in the obvious manner,

e.g. S is maximal consistent if S` is maximal.

Given a theory Θ, a set of formul� S is said to axiomatise Θ

just in case S` = Θ.

We now restrict attention to the fragment of  Lukasiewicz logic

over one variable, X .
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There are now natural bijections (up to isomorphism) between:

MV-algebras, and

Theories in  Lukasiewicz logic.

And between:

Linearly ordered MV-algebras, and

Prime theories in  Lukasiewicz logic.

And between:

Simple MV-algebras, and

Maximal theories in  Lukasiewicz logic.

Note

Any formula in  Lukasiewicz logic can be evaluated into any

MV-algebra, by construction.
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Theorem (Essentially O. Hölder, 1901)

If A is a simple MV-algebra, then there is a unique

MV-algebraic embedding

A ↪→ [0, 1].

Here, the interval [0, 1] ⊆ R is made into an MV-algebra with

neutral element 0 by de�ning

x B y := max {x − y , 0} , ¬x := 1 − x .

The underlying lattice order of this MV-algebra coincides with

the natural order of [0, 1].

Theorem (Chang’s completeness theorem, 1959)

The variety of MV-algebras is generated by [0, 1].

C.C. Chang, Trans. of the AMS, 1959.
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Now de�ne a valuation, tout court, to be an evaluation of the

entire set Form into MV-algebra [0, 1] | or equivalently, into

any simple MV-algebra. Write

� α

if each valuation w satis�es w(α) = 1. Then, from Chang's

theorem:

Soundness and Completeness Theorem for  L

For any α ∈ Form,

` α if, and only if, � α .

A. Rose and J. Barkley Rosser, Trans. of the AMS, 1958.
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Let us consider the tertium non datur equation:

x ∨ ¬x = 1 . (?)

Then (?) is not an identity over [0, 1]: the only evaluations into [0, 1]

that satisfy (?) are x 7→ 0 and x 7→ 1 | the Boolean, or classical,

evaluations.

Here is a 2-variable generalisation of the tertium non datur term:

x ∨ ¬x ∨ y ∨ ¬y = 1 (??)

The evaluations of x and y into [0, 1], i.e. the pairs (r , s) ∈ [0, 1]2,

that satisfy (??), are precisely the points lying on the boundary of the

unit square:

The boundary of the unit square.
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X ∨ ¬X = 1 (?)

The boundary of the unit interval.

X ∨ ¬X ∨Y ∨ ¬Y = 1 (??)

The boundary of the unit square.
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Rational polyhedra

Leonardo's Truncated Icosahedron

(Illustration for Luca Pacioli's The Divine Proportion, 1509.)
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We consider �nitely presented MV-algebras, i.e. those of the

form F n /θ, with θ a �nitely generated congruence (ideal). The

assumption on θ is far from immaterial: there is no Hilbert's

Basis Theorem for MV-algebras.

The convex hull of a set P ⊆ Rn , written convP , is the

collection of all convex combinations of elements of P :

convP =

{
m∑
i=1

rivi | vi ∈ P and 0 6 ri ∈ R with
m∑
i=1

ri = 1

}
.

Such a set is convex if P = convP .

The set P is called:

a polytope, if there is a �nite F ⊆ Rn with P = convF ;

a rational polytope, if there is a �nite F ⊆ Qn with

P = convF .
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A polytope in R2.
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A polytope in R2 (a simplex).
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A (compact) polyhedron in Rn is a union of �nitely many

polytopes in Rn .

A polyhedron in R2.

Similarly, a rational polyhedron is a union of �nitely many

rational polytopes.
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Let P ⊆ Rn be a rational polyhedron. A continuous function

f : P → R is a Z-map if the following hold.

1 There is a �nite set {L1, . . . ,Lm } of a�ne linear functions

Li : Rn → R such that f (x ) = Lix
(x ) for some 1 6 ix 6 m .

2 Each Li can be written as a linear polynomial with integer

coe�cients.

A piecewise linear function [0, 1]→ R.

A map F : P ⊆ Rn → Q ⊆ Rm between polyhedra always is of the

form F = (f1, . . . , fm), fi : P → R. Then F is a Z-map if each one of

its scalar components fi is.
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Rational polyhedra are precisely the subsets of Rn that are de�nable

by a term in the language of MV-algebras; and Z-maps are precisely

the continuous transformations that are de�nable by tuples of terms

in that language.

Stone-type duality for finitely presented MV-algebras

The category of �nitely presented MV-algebras, and their

homomorphisms, is equivalent to the opposite of the category of

rational polyhedra, and the Z-maps amongst them.

V.M. & L. Spada, Duality, projectivity, and uni�cation in  Lukasiewicz

logic and MV-algebras, Annals of Pure and Applied Logic, 2012.

PolyopQMVfp
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From MV-algebras to rational polyhedra: Given

F n /〈τ(x1, . . . , xn)〉, the associated rational polyhedron V (τ) is

the set of n-tuples (r1, . . . , rn) ∈ [0, 1]n such that

τ(r1, . . . , rn) = 0 in [0, 1].

From rational polyhedra to MV-algebras: Given P ⊆ Rn , the

collection ∇ (P) of all Z-maps P → [0, 1] is a (�nitely

presentable) MV-algebra under the pointwise operation

inherited from [0, 1].

Example. If τ(x1, . . . , xn) is identically equal to 0 in any

MV-algebra, then it generates the trivial ideal {0}. In this case,

F n /〈τ〉 = F n , and V (τ) = [0, 1]n . Hence the duals of free

algebras are the unit cubes.

Remark. The subspace V (τ) ⊆ [0, 1]n homeomorphic to the maximal

spectral space of F n /〈τ〉, topologised by the (analogue of) the Zariski

topology. The MV-algebra ∇ (P) is the exact analogue for rational

polyhedra of the coordinate ring of an a�ne algebraic variety.
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Remark. The subspace V (τ) ⊆ [0, 1]n homeomorphic to the maximal

spectral space of F n /〈τ〉, topologised by the (analogue of) the Zariski

topology. The MV-algebra ∇ (P) is the exact analogue for rational

polyhedra of the coordinate ring of an a�ne algebraic variety.
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The syntax-semantics dictionary.

Algebra, or Syntax. Geometry, or Semantics.

F.p. algebra Rational polyhedron

Homomorphism Z-map

F.p. subalgebra Continuous image by Z-map

F.p. quotient algebra Rational subpolyhedron

F.p. projective algebra Retract of cube by Z-maps

Free n-gen. algebra [0, 1]n

Maximal congruence Point of rational polyhedron

Intersection of maximal cong. Closed subset of rational polyhedron

Finite product A×B Finite disjoint union
...

...
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Numbers out of Formulæ

Otto H�older, 1859{1937.
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Consider the vague proposition,

X := \VM is tall".

We assumed that truth comes in `degrees', whatever they are.

What does it mean to attach a speci�c `degree of truth' to X ?

In classical logic:

The truth value attached to X (in a given possible world, i.e.

valuation) is the answer to one yes/no question: Is X the case?

In  Lukasiewicz logic:

The degree of truth attached to X (in a given possible world,

i.e. valuation) is the set of answers to a tree of yes/no questions.



Intermezzo Semantics Polyhedra Numbers out of Formul� Epilogue

Consider the vague proposition,

X := \VM is tall".

We assumed that truth comes in `degrees', whatever they are.

What does it mean to attach a speci�c `degree of truth' to X ?

In classical logic:

The truth value attached to X (in a given possible world, i.e.

valuation) is the answer to one yes/no question: Is X the case?

In  Lukasiewicz logic:

The degree of truth attached to X (in a given possible world,

i.e. valuation) is the set of answers to a tree of yes/no questions.



Intermezzo Semantics Polyhedra Numbers out of Formul� Epilogue

Consider the vague proposition,

X := \VM is tall".

We assumed that truth comes in `degrees', whatever they are.

What does it mean to attach a speci�c `degree of truth' to X ?

In classical logic:

The truth value attached to X (in a given possible world, i.e.

valuation) is the answer to one yes/no question: Is X the case?

In  Lukasiewicz logic:

The degree of truth attached to X (in a given possible world,

i.e. valuation) is the set of answers to a tree of yes/no questions.



Intermezzo Semantics Polyhedra Numbers out of Formul� Epilogue

Consider the vague proposition,

X := \VM is tall".

We assumed that truth comes in `degrees', whatever they are.

What does it mean to attach a speci�c `degree of truth' to X ?

In classical logic:

The truth value attached to X (in a given possible world, i.e.

valuation) is the answer to one yes/no question: Is X the case?

In  Lukasiewicz logic:

The degree of truth attached to X (in a given possible world,

i.e. valuation) is the set of answers to a tree of yes/no questions.



Intermezzo Semantics Polyhedra Numbers out of Formul� Epilogue

` α ?

L0,1 = ¬X

R0,1 = X

L1,1 = L0,1 B R0,1

R1,1 = R0,1

L2,1 = L1,1 B R1,1

R2,1 = R1,1

L3,1

R3,1

...

L3,2

R3,2

L2,2 = L1,1

R2,2 = R1,1 B L1,1

L3,3

R3,3

L3,4

R3,4

L1,2 = L0,1

R1,2 = R0,1 B L0,1

L2,3 = L1,2 B R1,2

R2,3 = R1,2

L3,5

R3,5

L3,6

R3,6

L2,4 = L1,2

R2,4 = R1,2 B L1,2

L3,7

R3,7

L3,8

R3,8

...

The Yes/No Questions.
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It turns out that the intrinsic degree of truth we can attach to a

formula α(X ) is a possibly in�nite branch of the tree, and that

these branches are in bijection (and thus encode) with

sequences of questions as mentioned above.

Let us encode a branch of the tree into a (�nite or in�nite)

sequence of left-right steps downward from the root, as in

lrllllrrrlrlrlr. . .

Taxonomy in one variable (for the sake of exposition):

The �nite sequences: Classify �nitely axiomatisable

theories, or equivalently the elements of [0, 1] ∩Q.

The in�nite sequences that are not de�nitively constant:

Classify maximal, non-�nitely-axiomatisable theories, or

equivalently the elements of [0, 1] \Q.

The in�nite de�nitively constant sequences: Classify

prime, non-maximal theories, or equivalently the elements

of [0, 1] ∩Q, plus or minus a linear in�nitesimal.
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The Farey tree.
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Cauchy’s Theorem. Every rational number in (0, 1) occurs,

automatically in reduced form, as the mediant of the numbers in some

node of the Farey tree exactly once. (The mediant of a

b
and c

d
is a+c

b+d
.)
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L0,1 = ¬X

R0,1 = X

L1,1 = L0,1 B R0,1

R1,1 = R0,1

L2,1 = L1,1 B R1,1

R2,1 = R1,1

L3,1

R3,1

...

L3,2

R3,2

L2,2 = L1,1

R2,2 = R1,1 B L1,1

L3,3

R3,3

L3,4

R3,4

L1,2 = L0,1

R1,2 = R0,1 B L0,1

L2,3 = L1,2 B R1,2

R2,3 = R1,2

L3,5

R3,5

L3,6

R3,6

L2,4 = L1,2

R2,4 = R1,2 B L1,2

L3,7

R3,7

L3,8

R3,8

...

Thm. There are natural bijections between the �nitely axiomatisable

maximal consistent theories in  L over 1 variable X , the nodes of the

Farey tree together with {0, 1}, and the rational numbers in [0, 1].
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Taking stock

To attach a degree of truth to a formula (=vague proposition

such as \VM is tall") in  Lukasiewiciz logic mean to consider

that formula subject to a prime consistent theory. In the

special case that the theory is maximal, the degree of truth can

be canonically identi�ed with a unique real number in [0, 1].

The prime theory has, moreover, a canonical | though not

recursively computable! | axiomatisation whose interpretation

in the intended semantics of vague propositions yield the

intuitive content of what it means, for example, to say that

\VM is tall" is true to degree 1
2 | or π

5
√
2
, for that matter.
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Epilogue
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A note on “Very” and “Somewhat”

The monoidal “conjunction”

α� β ≡ α B ¬β

Iterations of � express weakenings in the intended semantics. If

X := \VM is tall", then X �X := Very (\VM is tall"), i.e. \It is

very true that VM is tall".

Caution

The binary monoidal connective �, adjoint to →, is not

interpretable as a conjunction in the intended semantics.



Intermezzo Semantics Polyhedra Numbers out of Formul� Epilogue

A note on “Very” and “Somewhat”

The monoidal “disjunction”

α⊕ β ≡ ¬(¬α B β)

Iterations of ⊕ express weakenings in the intended semantics. If

X := \VM is tall", then X ⊕X := Somewhat (\VM is tall"), i.e.

\It is somewhat true that VM is tall".

Caution

The binary monoidal connective ⊕, adjoint to 	, is not

interpretable as a disjunction in the intended semantics.





Thank you for your attention.


	Intermezzo
	Semantics
	Polyhedra
	Numbers out of Formulæ
	Epilogue

